Current Issue : April-June Volume : 2024 Issue Number : 2 Articles : 5 Articles
Rosuvastatin (RSV) is a widely used cholesterol-lowering medication, but its limited bioavailability due to its susceptibility to stomach pH and extensive first-pass metabolism poses a significant challenge. A fast-dissolving film (FDF) formulation of RSV was developed, characterized, and compared to the conventional marketed tablet to address this issue. The formulation process involved optimizing the thickness, disintegration time, and folding durability. All formulations were assessed for in vitro disintegration, thickness, folding endurance, in vitro dissolution, weight, and content uniformity. The study’s results revealed that the optimized RSV-FDF displayed a significantly faster time to maximum plasma concentration (tmax) of 2 h, compared to 4 h for the marketed tablet. The maximum plasma concentration (Cmax) for the RSV-FDF (1.540 μg/mL ± 0.044) was notably higher than that of the marketed tablet (0.940 μg/mL ± 0.017). Additionally, the pharmacodynamic assessment in male Wistar rats demonstrated that the optimized RSV-FDF exhibited an improved lipid profile, including reduced levels of low-density lipoproteins (LDLs), elevated high-density lipoproteins (HDLs), decreased triglycerides (TGs), and lower very-low-density lipoproteins (VLDLs) compared to the conventional tablet. These findings underscore the potential of RSV-FDFs as a promising alternative to enhance the bioavailability and therapeutic efficacy of rosuvastatin in treating dyslipidemia. The faster onset of action and improved lipid-lowering effects make RSV-FDFs an attractive option for patients requiring efficient cholesterol management....
Acute kidney injury (AKI) and chronic kidney disease (CKD) have become public health problems due to high morbidity and mortality. Currently, drugs recommended for patients with AKI or CKD are extremely limited, and candidates based on a new mechanism need to be explored. 84-B10 is a novel 3-phenylglutaric acid derivative that can activate the mitochondrial protease, Lon protease 1 (LONP1), and may protect against cisplatin-induced AKI and unilateral ureteral obstruction- or 5/6 nephrectomy [5/6Nx]-induced CKD model. Preclinical studies have shown that 84-B10 has a good therapeutic effect, low toxicity, and is a good prospect for further development. In the present study, the UHPLC-MS/MS method was first validated then applied to the pharmacokinetic study and tissue distribution of 84-B10 in rats. Physicochemical properties of 84-B10 were then acquired in silico. Based on these physicochemical and integral physiological parameters, a physiological based pharmacokinetic (PBPK) model was developed using the PK-Sim platform. The fitting accuracy was estimated with the obtained experimental data. Subsequently, the validated model was employed to predict the pharmacokinetic profiles in healthy and chronic kidney injury patients to evaluate potential clinical outcomes. Cmax in CKD patients was about 3250 ng/mL after a single dose of 84-B10 (0.41 mg/kg), and Cmax,ss was 1360 ng/mL after multiple doses. This study may serve in clinical dosage setting in the future....
The selection of an appropriate dose of a given antibiotic for a neonate not only requires knowledge of the drug’s basic pharmacokinetic (PK) and pharmacodynamic (PD) properties but also the profound effects that organ development might have on the volume of distribution and clearance, both of which may affect the PK/PD of a drug. Interest has grown in alternative antibiotic dosing strategies that are better aligned with the antibiotic’s PK and PD properties. These strategies should be used in conjunction with minimum inhibitory concentration measurements and therapeutic drug monitoring to measure their potential success. They can also guide the clinician in tailoring the delivery of antibiotics to suit an individual patient’s needs. Model-informed precision dosing, such as Bayesian forecasting dosing software (which incorporates PK/PD population models), may be utilized to optimize antibiotic exposure in neonatal populations. Consequently, optimizing the antibiotic dose and exposure in each newborn requires expertise in different fields. It drives the collaboration of physicians together with lab technicians and quantitative clinical pharmacologists....
Ceftobiprole is a fifth-generation cephalosporin used for different Gram-positive bacterial infections. A population pharmacokinetic analysis was conducted in real-life clinical patients to assess the adequacy of current dosages. Population pharmacokinetics was conducted using non-linear mixed effect modeling. Monte Carlo simulations were performed to determine the probability of target attainment (PTA) of free trough or steady-state concentration over MIC (fCtrough/MIC or fCss/MIC) ≥ 1 or ≥4 associated with both the standard and intensified dosing regimens adjusted for renal function. Cumulative fraction of response (CFR) against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE) were also calculated. A total of 132 patients with 503 concentrations were included. Most of them (107/132, 81.1%) had hospital- or communityacquired pneumonia, endocarditis, and bacteremia. A three-compartment model adequately fitted ceftobiprole concentration-time data. Estimated glomerular filtration rate significantly affected drug clearance. Monte Carlo simulations showed that the optimal target of fCtrough/MIC or fCss/MIC ≥ 4 is achieved only with the use of the standard dosages administered by continuous infusion (CI) against MRSA infections in patients with preserved renal function. Intensified dosages administered by CI are needed in patients with impaired renal function and/or augmented renal clearance against MRSA and in patients with preserved renal functions against MRSE....
Milnacipran is a dual serotonin and norepinephrine reuptake inhibitor, clinically used for the treatment of major depression or fibromyalgia. Currently, there are no studies reporting the pharmacokinetics (PK) of milnacipran after intraperitoneal (IP) injection, despite this being the primary administration route in numerous experimental studies using the drug. Therefore, the present study was designed to investigate the PK profile of IP-administered milnacipran in mice and compare it to the intravenous (IV) route. First a liquid chromatography–mass spectrometry (LC-MS/MS) method was developed and validated to accurately quantify milnacipran in biological samples. The method was used to quantify milnacipran in blood and brain samples collected at various time-points post-administration. Non-compartmental and PK analyses were employed to determine key PK parameters. The maximum concentration (Cmax) of the drug in plasma was at 5 min after IP administration, whereas in the brain, it was at 60 min for both routes of administration. Curiously, the majority of PK parameters were similar irrespective of the administration route, and the bioavailability was 92.5% after the IP injection. These findings provide insight into milnacipran’s absorption, distribution, and elimination characteristics in mice after IP administration for the first time and should be valuable for future pharmacological studies....
Loading....